Sains Malaysiana 54(9)(2025): 2113-2123

http://doi.org/10.17576/jsm-2025-5409-01

 

Acute Insecticides Mixture Induced Oxidative Stress, DNA Damage and Nuclear Abnormalities in Three Economically Important Freshwater Species Catla catla, Cirrhina mrigala,
and Labeo rohita

(Campuran Racun Insektisida Akut Tekanan Oksidatif, Kerosakan DNA dan Keabnormalan Nuklear dalam Tiga Spesies Air Tawar Penting Secara Ekonomi Catla catla, Cirrhina mrigala dan Labeo rohita)

 

HUMA NAZ1,*, SAJID ABDULLAH2, TANVEER AHMED3,, NAJEEB-UR-REHMAN1, BASHARAT ALI4, KOUSAR AZIZ5, MUHAMMAD ADEEL HASSAN6, NIMRA ZAHID1, WARISHA SAIF1, MUHAMMAD AHMAD1, MAHNOOR CHAUDARY7, RASHID IQBAL8,9, ABEER HASHEM10, GRACIELA DOLORES AVILA-QUEZADA11, KHALID F. ALMUTAIRI12
& ELSAYED FATHI ABD_ALLAH12

 

1Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
2Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
3Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology,
Rahim Yar Khan, Pakistan
4Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
5Department of Zoology, University of Education, Faisalabad Campus, Lahore, Pakistan
6Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
7Department of Zoology, Bahauddin Zakariya University, Multan, Pakistan
8Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
9Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
10Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455,
Riyadh 11451, Saudi Arabia
11Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, 31350, Chihuahua,
Chihuahua, México
12Department of Plant Production, College of Food and Agricultural Sciences, King Saud University,
 P.O. Box. 2460, Riyadh 11451, Saudi Arabia

 

Received: 9 July 2024/Accepted: 10 July 2025

 

Abstract

Insecticides are the most significant pollutants that negatively affect the aquatic ecosystem globally. They are extensively applied in various industries and agriculture to manage the pests and weeds. The freshwater ecosystems are especially vulnerable to these insecticides because insecticides enter into them through leaching, drifting, runoff and drainage. Insecticides can adversely affect the aquatic animals including fish. Therefore, the experiment was conducted to evaluate the acute toxic effect of bifenthrin(B), chlorpyrifos(C) and endosulfan(E) mixtures on antioxidant enzymes (SOD, CAT, Pox, and GST) activities and genotoxic potential in three fish species Cirrhina mrigala, Labeo rohita, and Catla catla exposed for 4 days. Results demonstrated that the CAT activity increased in gills (G), liver (L), and kidney (K) of three fish species exposed tertiary mixture while it was decreased in brain (B), heart (H) and muscle (M) of fish. Comparison among three fish species showed that there was minor difference among fish species for CAT activity. Exposure of insecticides mixture caused a significant increase in GST, POx, and SOD activities in all selected organs of three species of fish. GST activity was maximum in B of fish followed by the L, M, K, G, and H. The POx activity in organs of three fish species followed the trend: L>B>G>K>H>M. The SOD activity in organs of fish followed the trend: L>B>K>G>H>M. DNA damage in terms of micronuclei (MN), nuclear abnormalities (BN, DN, BLN, NN, and DEN), genetic damage index (GDI) and % damaged nuclei (DN) in peripheral erythrocytes of three fishes increased significantly as a result of pesticides exposure with increasing duration as 96>72>48>24-h. The highest damage in DNA (DN and GDI), NA and MN were observed in erythrocytes of C. catla followed by that of C. mrigala and L. rohita. As a conclusion, antioxidant activities and DNA damage of different fish species based on their physiological differences may be useful biomarker for evaluation of aquatic pollution.

 

Keywords: Acute; CAT; fish; genotoxicity; GST; organs; POx; SOD; toxicants

 

Abstract

Racun serangga adalah bahan pencemar paling ketara yang memberi kesan negatif kepada ekosistem akuatik di seluruh dunia. Ia digunakan secara meluas dalam pelbagai industri dan pertanian untuk menguruskan perosak dan rumpai. Ekosistem air tawar amat terdedah kepada racun serangga ini kerana ia masuk ke dalamnya melalui larut lesap, air hanyut, air larian dan saliran. Insektisida boleh memberi kesan buruk kepada haiwan akuatik termasuk ikan. Oleh itu, uji kaji ini dijalankan untuk menilai kesan toksik akut campuran bifenthrin(B), chlorpyrifos(C) dan endosulfan(E) kepada aktiviti enzim antioksidan (SOD, CAT, POx dan GST) serta potensi genoketoksikan dalam tiga spesies ikan Cirrhina mrigala, Labeo rohita dan Catla catla yang terdedah selama 4 hari. Keputusan menunjukkan bahawa aktiviti CAT meningkat dalam insang (G), hati (L) dan buah pinggang (K) tiga spesies ikan terdedah kepada campuran tertier manakala ia berkurangan dalam otak (B), jantung (H) dan otot (M) ikan. Perbandingan antara tiga spesies ikan ini menunjukkan terdapat perbezaan kecil antara spesies ikan untuk aktiviti CAT. Pendedahan campuran racun serangga menyebabkan peningkatan ketara dalam aktiviti GST, POx dan SOD dalam semua organ terpilih bagi tiga spesies ikan ini. Aktiviti GST adalah maksimum dalam B ikan diikuti oleh L, M, K, G dan H. Aktiviti POx dalam organ tiga spesies ikan mengikut trend: L>B>G>K>H>M. Aktiviti SOD dalam organ ikan mengikut trend: L>B>K>G>H>M. Kerosakan DNA dari segi mikronukleus (MN), keabnormalan nuklear (BN, DN, BLN, NN dan DEN), indeks kerosakan genetik (GDI) dan % nukleus rosak (DN) dalam eritrosit periferi tiga ekor ikan meningkat dengan ketara akibat pendedahan racun perosak dengan peningkatan tempoh 96>72>48>24-jam. Kerosakan tertinggi dalam DNA (DN dan GDI), NA dan MN diperhatikan dalam eritrosit C. catla diikuti oleh C. mrigala dan L. rohita. Sebagai kesimpulan, aktiviti antioksidan dan kerosakan DNA spesies ikan yang berbeza berdasarkan perbezaan fisiologi mereka mungkin penanda bio berguna untuk penilaian pencemaran akuatik.

 

Kata kunci: Akut; CAT; ikan; genoketoksikan; GST; organ; POx; SOD; ketoksikan

 

REFERENCES

Khan et al. 2020

Abdullah, S., Mateen, A., Abbas, K., Naz, H., Hassan, W. & Anum, S. 2018. Changes in antioxidant enzyme (glutathione S-transferase) activity in fish Channa striata exposed to the different aquatic pollutants (heavy metals and pesticides mixture). Pakistan Journal of Zoology Supplementary Series 13: 42-47.

Abhijith, B.D., Ramesh, M. & Poopal, R.K. 2016. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. Journal of Basic and Applied Zoology 77: 31-40. doi:10.1016/j.jobaz.2015.11.002

Ahmad, S., Scopes, R.K., Rees, G.N. & Patel, B.K.C. 2000. Saccharococcus caldoxylosilyticussp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology 50: 517- 523. doi:10.1099/00207713-50-2-517

Ali, D., Kumar, P.G., Kumar, S. & Ahmed, M. 2014.  Evaluation of genotoxic and oxidative stress response to dimethoate in freshwater fish Channa punctatus (Bloch). Chemical Speciation and Bioavailability 26: 111-118. doi.org/10.1080/0954229 9.2014 11073965

Ambreen, F., Javed, M., Abbas, S., Kousar, S., Ilyas, R. & Batool, M. 2018. DNA damage in peripheral erythrocytes of Ctenopharyngodon idella during chronic exposure to pesticide mixture. Pakistan Journal of Zoology Supplementary Series 13: 19-25.

Amin, M.,  Yousuf, M., Attaullah, M., Nabi, G., Buneri, I., Ahmad, N., Ubaid-Ullah & Khan, Z. 2020. Comparative acute toxicity of organophosphates and synthetic pyrethroid pesticides in vivo exposed fresh water fish Oreochromis niloticus (Linnaeus, 1758).  Aquatic Ecosystem Health & Management 23(3): 366-372. doi.org/10.1080/14634988.2020.1816078

Anbumani, S., Mary, N. & Kumar, M. 2015. Cytogenotoxicity assessment of monocrotophos and butachlor at single and combined chronic exposures in the fish Catla catla (Hamilton). Environmental Science and Pollution Research 22: 4964-4976. doi:10.1007/s11356-014-3782-y

Ansoar-Rodriguez, Y., Christofoletti, C.A., Marcato, A.C., Correia, J.E., Bueno, O.C., Malaspina, O. & Fontanetti, C.S. 2015. Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus- Pisces). Journal of Environmental Protection 6: 1360-1367.

Banaee, M., Mirvaghefi, A.R., Ahmadi, K. & Banaee, S. 2008. Determination of LC50 and investigation of acute toxicity effects of diazinon on haematology and serology indices of common carp (Cyprinus carpio). Journal of Marine Science and Technology 3(2): 1-10.

Barsiene, J., Lazutka, J., Syvokiene, J., Dedonyte, V., Rybakovas, A., Bjornstad, A. & Andersen, O.K. 2004. Analysis of micronuclei in blue mussels and fish from the Baltic and North Seas. Environmental Toxicology 19: 365-371. doi:10.1002/tox.20031

Bhatnagar, A., Yadav, A.S. & Cheema, N. 2016. Genotoxic effects of chlorpyrifos in freshwater fish Cirrhinus mrigalausing micronucleus assay. Advances in Biology 2016: Article ID. 9276963. doi:org/10.1155/2016/9276963

Blahova, J., Plhalova, L., Hostovsky, M., Divisova, L., Dobsikova, R., Vana-Mikulikova, I., Stepanova, S. & Svobodova, Z. 2013. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food and Chemical Toxicology 61: 82-85. doi:10.1016/j.fct.2013.02.041

Bolognesi, C. & Hayashi, M. 2011. Micronucleus assay in aquatic animals. Mutagenesis 26: 205-213. doi:10.1093/mutage/geq073

Cavas, T. & Ergene-Gozukara, S. 2005. Induction of micronuclei and nuclear abnormalities Orechromis niloticus following exposure of petroleum refinery and chromium processing plant effluents. Aquatic Toxicology 74: 264-271.

Chance, M. & Mehaly, A.C. 1955. Assay of catalase and peroxidase. Methods in Enzymology 2: 764-775. doi.org/10.1016/S0076-6879(55)02300-8

Costa, P.M., Neuparth, T.S., Caeiro, S., Lobo, J., Martins, M., Ferreira, A.M., Caetano, M., Vale, C., DelValls, T.A. & Costa, M.H. 2011. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies. Environmental Research 111: 25-36.

Dar, S.A., Yousuf, A.R., Balkhi, M.H., Ganai, F.A. & Bhat, F.A. 2015. Assessment of endosulfan induced genotoxicity and mutagenicity manifested by oxidative stress pathways in freshwater cyprinid fish crucian carp (Carassius carassius L.). Chemosphere 120: 273-283.

Dawar, F.U., Zuberi, A., Azizullah, A. & Khattak, M.N.K. 2016. Effects of cypermethrin on survival, morphological and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 144: 697-705. doi:10.1016/j.chemosphere.2015. 09.007

Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi, S. & Zeiger, E. 2003. Human project: Detailed description of the scoring criteria for the cytokinesis block micronucleus assay using isolated human lymphocyte cultures. Mutation Research 534: 65-75.

Gadhia, M., Prajapati, R. & Gadhia, P. 2016. Cypermethrin induced DNA damage in Labeo rohita assessed by comet assay. International Journal of Environmental Sciences 6: 1113-1116.

Giannopolitis, C.N. & Ries, S.K. 1977. Superoxide dismutase I. occurrence in higher plants. Plant Physiology 59: 309-314.

Isik, I. & Celik, I. 2008. Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology 92: 38-42. doi:10.1016/j.pestbp.2008.06.001

Jalili, S., Ilkhanipour, M., Heydari, R., Farshid, A.A. & Salehi, S. 2007. The effects of vitamin E on endosulfan - induced oxidative stress in rat heart. Pakistan Journal of Nutrition 6: 375-380.

John, E.M. & Shaike, J.M. 2015. Chlorpyrifos: Pollution and remediation. Environmental Chemistry Letters 13: 269-291. doi:org/10.1007/s10311-015-0513-7

Jose, S., Jayesh, P., Mohandas, A., Philip, R. & Singh, I.S.B. 2011. Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Marine Environmental Research 71: 169-177. doi:10.1016/j.marenvres.2010.12.008

Karmakar, S., Patra, K., Jana, S., Mandal, D.P. & Bhattacharjee, S. 2016. Exposure to environmentally relevant concentrations of malathion induces significant cellular, biochemical and histological alterations in Labeo rohita. Pesticide Biochemistry and Physiology 126: 49-57. doi.org/10.1016/j.pestbp.2015.07.006

Kaur, M. & Jindal, R. 2017. Oxidative stress response in liver, kidney and gills of Ctenopharyngodon idellus(Cuvier & Valenciennes) exposed to chlorpyrifos. MedCrave Online Journal of Biology and Medicine 1(4): 00021. doi:10.15406/mojbm.2017.01.00021

Kousar, S. & Javed, M. 2015. Studies on induction of nuclear abnormalities in peripheral blood erythrocytes of fish exposed to copper. Turkish Journal of Fisheries and Aquatic Sciences 15: 879-886. doi:10.4194/1303-2712-v15-4-11

Majumder, R. & Kaviraj, A. 2018. Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology 42: 487-495. doi:10.1080/01480545.2018.1425425

Mannervik, B. 1985. The isozymes of glutatione transferase. Advances in Enzymology and Related Areas of Molecular Biology 57: 357-417.

Modesto, K.A. & Martinez, C.B. 2010. Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78: 294-299. doi:10.1016/j.chemosphere.2009.10.047

Monteiro, D.A., Almeida, J.A.D., Rantin, F.T. & Kalinin, A.L. 2006. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology 143: 141-149. doi: 10.1016/j.cbpc.2006.01.004

Muranli, F.D.G. & Güner, U. 2011. Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mutation Research 726: 104-108.

Nan, P., Yan, S., Li, L., Chen, J., Du, Q. & Chang, Z. 2015. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus) assessed by micronucleus test, hepatase activity analysis and comet assay. Toxicology and Industrial Health 31: 566-575.

Naqvi, G.E.Z., Shoaib, N. & Ali, A.M. 2016. Genotoxic potential of pesticides in the peripheral blood erythrocytes of fish (Oreochromis mossambicus). Pakistan Journal of Zoology 48: 1643-1648.

Naz, H., Abdullah, S., Abbas, K., Hassan, W., Batool, M., Perveen, S., Maalik, S. & Mushtaq, S. 2019. Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish, Labeo rohita. Pakistan Journal of Zoology 54(1): 1355-1361.

Naz, H., Abdullah, S., Abbas, K. & Zia, M.A. 2017. Pesticides mixture toxicity; Effects on superoxide dismutase activity in Indian major carps. Pakistan Journal of Agriculture Sciences 54: 607-611. doi:10.21162/pakjas/17.5939

Ng, W.K. & Romano, N. 2013. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture 5(4): 220-254. doi:org/10.11 11/raq.12014

Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B. & Srivastava, S.K. 2010. Mutagenic and genotoxic effects of carbosulfan in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology 48: 202-208.

Omitoyin, B.O., Ajani, E.K. & Fajinmi, A. 2006. Toxicity of gramoxone (paraquat) to juvenile of African catfish, Clarias gariepinus (Burchell, 1822). American Euroasians al of Environmental and Agricultural Sciences 1: 26-30.

Oropesa, A.L., Garcia-Cambero, J.P. & Soler, F. 2008. Effect of long-term exposure to simazine on brain and muscle acetylcholinesterase activity of common carp (Cyprinus carpio). Environmental Toxicology 23: 285-293. doi:10.1002/tox.20342

Patil, V.K. & David, M. 2013. Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure. Environmental Monitoring and Assessment 185: 10191-10199. doi:10.1007/s10661-013-3323-z

Pereira, L., Fernandes, M.N. & Martinez, C.B.R. 2013. Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicides clomazone. Environmental Toxicology and Pharmacology 36: 1-8. doi:10.1016/j.etap. 2013.02.019

Piazza, Y., Pandolfi, M., Da-Cuna, R., Genovese, G. & Nostro, F. 2015. Endosulfan affects GnRH cells in sexually differentiated juveniles of the perciform Cichlasoma dimerus. Ecotoxicology and Environmental Safety 116: 150-159. doi:10.1016/j.ecoenv.2015.03.013

Reddy, S.J., Vineela, D. & Kumar, B.K. 2016. Effect of diazinon on antioxidant system of fresh water fish, Catla catla. European Journal of Biomedical and Pharmaceutical Sciences 3: 354-358.

Safari, B.R., Khalili, M., Imanpour, R.M. & Pourkazemi, M. 2016. The effects of endosulfan on P450 1A gene expression, antioxidant enzymes activity and histopathological alterations in liver of Persian sturgeon (Acipenser persicus Borodin, 1987). Journal of Applied Ichthyology 32: 636-642. doi:org/10.1111/jai.13072

Shao, B., Zhu, L., Dong, M., Wang, J., Wang, J., Xie, H., Zhang, Q., Du, Z. & Zhu, S. 2012. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21: 1533-1540. doi:10.1007/s10646-012-0907-2

Sharbidre, A.A., Metkari, V. & Patode, P. 2011. Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulate. Pesticide Biochemistry and Physiology 101: 132-141. doi:10.1016/j.pestbp.2011.09.002

Shukla, S., Jhamtani, R.C., Dahiya, M.S. & Agarwal, R. 2017. Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports 4: 240-244. doi:10.1016/j.toxrep.2017.05.002

Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. 1988. A simple technique for quantization of low levels of DNA damage in individual cells. Experimental Cell Research 175: 184-191.

Sunanda, M., Rao, J.C.S., Neelima, P., Rao, K.G. & Simhachalam, G. 2016. Effects of chlorpyrifos (an organophosphate pesticide) in fish. International Journal of Pharmaceutical Sciences Review and Research 39: 299-305.

Tejada, S., Sureda, A., Roca, C., Gamundí, A. & Esteban, S. 2007. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Research Bulletin 71: 372-375. doi:10.1016%2Fj.brainresbull.2006.10.005

Thenmozhi, C., Vignesh, V., Thirumurugan, R. & Arun, S. 2011. Impacts of malathion on mortality and biochemical changes of freshwater fish Labeo rohita. Iranian Journal of Environmental Health Science & Engineering 8: 325-332.

Ullah, R., Zuberi, A., Ullah, S., Ullah, I. & Dawar, F.U. 2014. Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. The Journal of Toxicological Sciences 39: 829-836.

Vijayakumar, A., Thirnavukkarasu, N., Jayachandran, K. & Susiladevi, M. 2016.  Attenuating properties of atropine against the cypermethrin toxicity in the oxidative stress in the fresh water fish Labeo rohita (Hamilton). International Journal of Modern Research and Reviews 4: 1088-1093.

Walia, G.K., Handa, D., Kaur, H. & Kalotra, R. 2015. Ecotoxicological studies on fish, Labeo rohita exposed to tannery industry effluent by using micronucleus test. Nucleus 58: 111-116. doi:10.1007/s13237-015-0140-5

Wu, H. & Ding, S. 2016. Micronuclei and dyskaryosis of erythrocytes and oxidative stress response with endosulfan exposure in topmouth gudgeon Pseudorasbora parva. Ecotoxicology and Environmental Safety 134: 179-185.

Yaseen, Ullah, A., Khan, I., Begum, M., Bibi, S., Umber, Namra, Khan, A., Gul, S. & Taj, R. 2024. Induced-toxicity of pesticides on edible freshwater fishes in Pakistan: A review. Sarhad Journal of Agriculture 40(1): 195-212.

Zhang, J., Shen, H., Wang, X., Wu, J. & Xue, Y. 2004. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55: 167-174. doi:10.1016/j.chemosphere.2003.10.048

Zhang, Z.Y., Yu, X.Y., Wang, D.L., Yan, H.J. & Liu, X.J. 2010. Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest Management Sciences 66(1): 84-89. doi.org/10.1002/ps.1834

Zhao, F., Wang, B., Zhang, X., Tian, H., Wang, W. & Ru, S. 2015. Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. Fish Physiology and Biochemistry 41: 613-624. doi:10.1007/s10695-015-0032-2

 

*Corresponding author; email: dr.humanaz98@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  next