Sains Malaysiana 54(9)(2025): 2113-2123
http://doi.org/10.17576/jsm-2025-5409-01
Acute
Insecticides Mixture Induced Oxidative Stress, DNA Damage and Nuclear
Abnormalities in Three Economically Important Freshwater Species Catla catla, Cirrhina mrigala,
and Labeo rohita
(Campuran Racun Insektisida Akut Tekanan Oksidatif, Kerosakan DNA dan Keabnormalan Nuklear dalam Tiga Spesies Air Tawar Penting Secara Ekonomi Catla catla, Cirrhina mrigala dan Labeo rohita)
HUMA NAZ1,*, SAJID ABDULLAH2, TANVEER AHMED3,, NAJEEB-UR-REHMAN1, BASHARAT ALI4,
KOUSAR AZIZ5, MUHAMMAD ADEEL HASSAN6, NIMRA ZAHID1,
WARISHA SAIF1, MUHAMMAD AHMAD1, MAHNOOR CHAUDARY7,
RASHID IQBAL8,9, ABEER HASHEM10, GRACIELA DOLORES
AVILA-QUEZADA11, KHALID F. ALMUTAIRI12
& ELSAYED FATHI ABD_ALLAH12
1Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
2Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
3Department of Life Sciences, Khwaja Fareed University of
Engineering and Information Technology,
Rahim Yar Khan, Pakistan
4Department of Agricultural Engineering, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan, Pakistan
5Department of Zoology, University of Education, Faisalabad Campus,
Lahore, Pakistan
6Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
7Department of Zoology, Bahauddin Zakariya University, Multan,
Pakistan
8Department of Agronomy, Faculty of Agriculture and Environment, The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
9Department of Life Sciences, Western Caspian University, Baku,
Azerbaijan
10Department of Botany and Microbiology, College of Science, King
Saud University, P.O. Box. 2455,
Riyadh 11451, Saudi Arabia
11Facultad de Ciencias Agrotecnológicas,
Universidad Autónoma de Chihuahua, 31350, Chihuahua,
Chihuahua, México
12Department of Plant Production, College of Food and Agricultural
Sciences, King Saud University,
P.O. Box. 2460, Riyadh 11451, Saudi
Arabia
Received: 9 July
2024/Accepted: 10 July 2025
Abstract
Insecticides
are the most significant pollutants that negatively affect the aquatic
ecosystem globally. They are extensively applied in various industries and
agriculture to manage the pests and weeds. The freshwater ecosystems are
especially vulnerable to these insecticides because insecticides enter into them through leaching, drifting, runoff and
drainage. Insecticides can adversely affect the aquatic animals including fish.
Therefore, the experiment was conducted to evaluate the acute toxic effect of
bifenthrin(B), chlorpyrifos(C) and endosulfan(E) mixtures on antioxidant
enzymes (SOD, CAT, Pox, and GST) activities and genotoxic potential in three
fish species Cirrhina mrigala, Labeo rohita, and Catla catla exposed
for 4 days. Results demonstrated that the CAT activity increased in
gills (G), liver (L), and kidney (K) of three fish species exposed tertiary
mixture while it was decreased in brain (B), heart (H) and muscle (M) of fish.
Comparison among three fish species showed that there was minor difference
among fish species for CAT activity. Exposure of insecticides mixture caused a
significant increase in GST, POx, and SOD activities
in all selected organs of three species of fish. GST activity was maximum in B
of fish followed by the L, M, K, G, and H. The POx activity in organs of three fish species followed the trend:
L>B>G>K>H>M. The SOD activity in organs of fish followed the
trend: L>B>K>G>H>M. DNA damage in terms of micronuclei (MN),
nuclear abnormalities (BN, DN, BLN, NN, and DEN), genetic damage index (GDI)
and % damaged nuclei (DN) in peripheral erythrocytes of three fishes increased
significantly as a result of pesticides exposure with increasing duration as
96>72>48>24-h. The highest damage in DNA (DN and GDI), NA and MN were observed in erythrocytes of C. catla followed by that of C. mrigala and L. rohita. As a conclusion,
antioxidant activities and DNA damage of different fish species based on their
physiological differences may be useful biomarker for evaluation of aquatic
pollution.
Keywords: Acute;
CAT; fish; genotoxicity; GST; organs; POx; SOD;
toxicants
Abstract
Racun serangga adalah bahan pencemar paling ketara yang memberi kesan negatif kepada ekosistem akuatik di seluruh dunia. Ia digunakan secara meluas dalam pelbagai industri dan pertanian untuk menguruskan perosak dan rumpai. Ekosistem air tawar amat terdedah kepada racun serangga ini kerana ia masuk ke dalamnya melalui larut lesap,
air hanyut, air larian dan saliran. Insektisida boleh memberi kesan buruk kepada haiwan akuatik termasuk ikan. Oleh itu, uji kaji ini dijalankan untuk menilai kesan toksik akut campuran bifenthrin(B), chlorpyrifos(C) dan
endosulfan(E) kepada aktiviti enzim antioksidan (SOD,
CAT, POx dan GST) serta potensi genoketoksikan dalam tiga spesies ikan Cirrhina mrigala, Labeo rohita dan Catla catla yang terdedah selama 4 hari. Keputusan menunjukkan bahawa aktiviti CAT meningkat dalam insang (G), hati (L) dan buah pinggang (K) tiga spesies ikan terdedah kepada campuran tertier manakala ia berkurangan dalam otak (B), jantung (H) dan otot (M) ikan. Perbandingan antara tiga spesies ikan ini menunjukkan terdapat perbezaan kecil antara spesies ikan untuk aktiviti CAT. Pendedahan campuran racun serangga menyebabkan peningkatan ketara dalam aktiviti GST, POx dan SOD dalam semua organ terpilih bagi tiga spesies ikan ini. Aktiviti GST adalah maksimum dalam B ikan diikuti oleh L, M,
K, G dan H. Aktiviti POx dalam organ tiga spesies ikan mengikut trend:
L>B>G>K>H>M. Aktiviti SOD dalam organ ikan mengikut trend:
L>B>K>G>H>M. Kerosakan DNA dari segi mikronukleus (MN), keabnormalan nuklear (BN, DN, BLN, NN dan DEN), indeks kerosakan genetik (GDI) dan % nukleus rosak (DN) dalam eritrosit periferi tiga ekor ikan meningkat dengan ketara akibat pendedahan racun perosak dengan peningkatan tempoh 96>72>48>24-jam. Kerosakan tertinggi dalam DNA (DN dan
GDI), NA dan MN diperhatikan dalam eritrosit C. catla diikuti oleh C. mrigala dan L. rohita. Sebagai kesimpulan, aktiviti antioksidan dan kerosakan DNA spesies ikan yang berbeza berdasarkan perbezaan fisiologi mereka mungkin penanda bio berguna untuk penilaian pencemaran akuatik.
Kata kunci: Akut; CAT; ikan; genoketoksikan; GST; organ; POx;
SOD; ketoksikan
REFERENCES
Khan et al. 2020
Abdullah, S., Mateen, A., Abbas, K., Naz,
H., Hassan, W. & Anum, S. 2018. Changes in antioxidant enzyme (glutathione
S-transferase) activity in fish Channa striata exposed to the different
aquatic pollutants (heavy metals and pesticides mixture). Pakistan Journal
of Zoology Supplementary Series 13: 42-47.
Abhijith, B.D., Ramesh, M. & Poopal, R.K. 2016. Responses of metabolic and antioxidant
enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. Journal
of Basic and Applied Zoology 77: 31-40. doi:10.1016/j.jobaz.2015.11.002
Ahmad, S., Scopes, R.K., Rees, G.N. &
Patel, B.K.C. 2000. Saccharococcus caldoxylosilyticussp. nov.,
an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. International
Journal of Systematic and Evolutionary Microbiology 50: 517- 523.
doi:10.1099/00207713-50-2-517
Ali, D., Kumar, P.G., Kumar, S. &
Ahmed, M. 2014. Evaluation of genotoxic
and oxidative stress response to dimethoate in freshwater fish Channa
punctatus (Bloch). Chemical Speciation and Bioavailability 26:
111-118. doi.org/10.1080/0954229 9.2014 11073965
Ambreen, F., Javed, M., Abbas, S., Kousar,
S., Ilyas, R. & Batool, M. 2018. DNA damage in peripheral erythrocytes of Ctenopharyngodon idella during chronic exposure to pesticide mixture. Pakistan Journal of Zoology
Supplementary Series 13: 19-25.
Amin, M., Yousuf, M., Attaullah, M., Nabi, G., Buneri, I., Ahmad, N., Ubaid-Ullah & Khan, Z. 2020.
Comparative acute toxicity of organophosphates and synthetic pyrethroid
pesticides in vivo exposed fresh water fish Oreochromis
niloticus (Linnaeus, 1758). Aquatic
Ecosystem Health & Management 23(3): 366-372.
doi.org/10.1080/14634988.2020.1816078
Anbumani, S., Mary, N. & Kumar, M.
2015. Cytogenotoxicity assessment of monocrotophos and butachlor at single and combined chronic
exposures in the fish Catla catla (Hamilton). Environmental Science and Pollution Research 22: 4964-4976. doi:10.1007/s11356-014-3782-y
Ansoar-Rodriguez, Y., Christofoletti,
C.A., Marcato, A.C., Correia, J.E., Bueno, O.C., Malaspina, O. & Fontanetti, C.S. 2015. Genotoxic potential of the
insecticide imidacloprid in a non-target organism (Oreochromis niloticus-
Pisces). Journal of Environmental Protection 6: 1360-1367.
Banaee, M., Mirvaghefi,
A.R., Ahmadi, K. & Banaee, S. 2008. Determination of LC50 and
investigation of acute toxicity effects of diazinon on haematology and serology
indices of common carp (Cyprinus carpio). Journal of Marine
Science and Technology 3(2): 1-10.
Barsiene, J., Lazutka,
J., Syvokiene, J., Dedonyte,
V., Rybakovas, A., Bjornstad, A. & Andersen, O.K. 2004. Analysis of
micronuclei in blue mussels and fish from the Baltic and North Seas. Environmental
Toxicology 19: 365-371. doi:10.1002/tox.20031
Bhatnagar, A., Yadav, A.S. & Cheema, N.
2016. Genotoxic effects of chlorpyrifos in freshwater fish Cirrhinus mrigalausing micronucleus assay. Advances in
Biology 2016: Article ID. 9276963. doi:org/10.1155/2016/9276963
Blahova, J., Plhalova,
L., Hostovsky, M., Divisova,
L., Dobsikova, R., Vana-Mikulikova, I., Stepanova, S.
& Svobodova, Z. 2013. Oxidative stress responses
in zebrafish Danio rerio after subchronic exposure to atrazine. Food and Chemical Toxicology 61: 82-85. doi:10.1016/j.fct.2013.02.041
Bolognesi, C. & Hayashi, M. 2011.
Micronucleus assay in aquatic animals. Mutagenesis 26: 205-213.
doi:10.1093/mutage/geq073
Cavas, T. & Ergene-Gozukara,
S. 2005. Induction of micronuclei and nuclear abnormalities Orechromis niloticus following exposure of petroleum refinery and chromium processing
plant effluents. Aquatic Toxicology 74: 264-271.
Chance, M. & Mehaly,
A.C. 1955. Assay of catalase and peroxidase. Methods in Enzymology 2:
764-775. doi.org/10.1016/S0076-6879(55)02300-8
Costa, P.M., Neuparth,
T.S., Caeiro, S., Lobo, J., Martins, M., Ferreira, A.M., Caetano, M., Vale, C., DelValls, T.A. & Costa, M.H. 2011. Assessment of
the genotoxic potential of contaminated estuarine sediments in fish peripheral
blood: Laboratory versus in situ studies. Environmental Research 111: 25-36.
Dar, S.A., Yousuf, A.R., Balkhi, M.H.,
Ganai, F.A. & Bhat, F.A. 2015. Assessment of endosulfan induced
genotoxicity and mutagenicity manifested by oxidative stress pathways in
freshwater cyprinid fish crucian carp (Carassius carassius L.). Chemosphere 120: 273-283.
Dawar, F.U., Zuberi, A., Azizullah, A.
& Khattak, M.N.K. 2016. Effects of cypermethrin on survival, morphological
and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 144: 697-705. doi:10.1016/j.chemosphere.2015. 09.007
Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi,
S. & Zeiger, E. 2003. Human project: Detailed description of the scoring
criteria for the cytokinesis block micronucleus assay using isolated human
lymphocyte cultures. Mutation Research 534: 65-75.
Gadhia, M., Prajapati, R. & Gadhia, P.
2016. Cypermethrin induced DNA damage in Labeo rohita assessed by comet assay. International
Journal of Environmental Sciences 6: 1113-1116.
Giannopolitis, C.N. & Ries, S.K. 1977. Superoxide
dismutase I. occurrence in higher plants. Plant Physiology 59: 309-314.
Isik, I. & Celik, I. 2008. Acute
effects of methyl parathion and diazinon as inducers for oxidative stress on
certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology 92: 38-42. doi:10.1016/j.pestbp.2008.06.001
Jalili, S., Ilkhanipour,
M., Heydari, R., Farshid, A.A. & Salehi, S. 2007. The effects of vitamin E
on endosulfan - induced oxidative stress in rat heart. Pakistan Journal of
Nutrition 6: 375-380.
John, E.M. & Shaike,
J.M. 2015. Chlorpyrifos: Pollution and remediation. Environmental Chemistry
Letters 13: 269-291. doi:org/10.1007/s10311-015-0513-7
Jose, S., Jayesh, P., Mohandas, A., Philip,
R. & Singh, I.S.B. 2011. Application of primary haemocyte culture of Penaeus
monodon in the assessment of cytotoxicity and genotoxicity of heavy metals
and pesticides. Marine Environmental Research 71: 169-177. doi:10.1016/j.marenvres.2010.12.008
Karmakar, S., Patra, K., Jana, S., Mandal,
D.P. & Bhattacharjee, S. 2016. Exposure to environmentally relevant
concentrations of malathion induces significant cellular, biochemical and
histological alterations in Labeo rohita. Pesticide Biochemistry and Physiology 126:
49-57. doi.org/10.1016/j.pestbp.2015.07.006
Kaur, M. & Jindal, R. 2017. Oxidative
stress response in liver, kidney and gills of Ctenopharyngodon idellus(Cuvier & Valenciennes) exposed to
chlorpyrifos. MedCrave Online Journal of
Biology and Medicine 1(4): 00021. doi:10.15406/mojbm.2017.01.00021
Kousar, S. & Javed, M. 2015. Studies on
induction of nuclear abnormalities in peripheral blood erythrocytes of fish
exposed to copper. Turkish Journal of Fisheries and Aquatic Sciences 15:
879-886. doi:10.4194/1303-2712-v15-4-11
Majumder, R. & Kaviraj, A. 2018. Acute
and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater
fish Oreochromis niloticus. Drug and Chemical Toxicology 42:
487-495. doi:10.1080/01480545.2018.1425425
Mannervik, B. 1985. The isozymes of glutatione transferase. Advances in Enzymology and
Related Areas of Molecular Biology 57: 357-417.
Modesto, K.A. & Martinez, C.B. 2010.
Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in
muscle and brain of the fish Prochilodus lineatus. Chemosphere 78: 294-299. doi:10.1016/j.chemosphere.2009.10.047
Monteiro, D.A., Almeida, J.A.D., Rantin, F.T. & Kalinin, A.L. 2006. Oxidative stress
biomarkers in the freshwater characid fish, Brycon cephalus, exposed to
organophosphorus insecticide Folisuper 600 (methyl
parathion). Comparative Biochemistry and Physiology 143: 141-149. doi: 10.1016/j.cbpc.2006.01.004
Muranli, F.D.G. & Güner, U. 2011. Induction of
micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid
insecticide lambda-cyhalothrin. Mutation Research 726: 104-108.
Nan, P., Yan, S., Li, L., Chen, J., Du, Q.
& Chang, Z. 2015. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus)
assessed by micronucleus test, hepatase activity
analysis and comet assay. Toxicology and Industrial Health 31: 566-575.
Naqvi, G.E.Z., Shoaib, N. & Ali, A.M.
2016. Genotoxic potential of pesticides in the peripheral blood erythrocytes of
fish (Oreochromis mossambicus). Pakistan Journal
of Zoology 48: 1643-1648.
Naz, H., Abdullah, S., Abbas, K., Hassan,
W., Batool, M., Perveen, S., Maalik, S. & Mushtaq, S. 2019. Toxic effect of
insecticides mixtures on antioxidant enzymes in different organs of fish, Labeo rohita. Pakistan
Journal of Zoology 54(1): 1355-1361.
Naz, H., Abdullah, S., Abbas, K. & Zia,
M.A. 2017. Pesticides mixture toxicity; Effects on superoxide dismutase
activity in Indian major carps. Pakistan Journal of Agriculture Sciences 54:
607-611. doi:10.21162/pakjas/17.5939
Ng, W.K. & Romano, N. 2013. A review of
the nutrition and feeding management of farmed tilapia throughout the culture
cycle. Reviews in Aquaculture 5(4): 220-254. doi:org/10.11
11/raq.12014
Nwani, C.D., Lakra, W.S., Nagpure, N.S.,
Kumar, R., Kushwaha, B. & Srivastava, S.K. 2010. Mutagenic and genotoxic
effects of carbosulfan in freshwater fish Channa
punctatus (Bloch) using micronucleus assay and alkaline single-cell gel
electrophoresis. Food and Chemical Toxicology 48: 202-208.
Omitoyin, B.O., Ajani, E.K. & Fajinmi, A. 2006. Toxicity of gramoxone (paraquat) to juvenile of African catfish, Clarias gariepinus (Burchell, 1822). American Euroasians al of Environmental and Agricultural Sciences 1: 26-30.
Oropesa, A.L., Garcia-Cambero, J.P. &
Soler, F. 2008. Effect of long-term exposure to simazine on brain and muscle
acetylcholinesterase activity of common carp (Cyprinus carpio). Environmental
Toxicology 23: 285-293. doi:10.1002/tox.20342
Patil, V.K. & David, M. 2013. Oxidative
stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure. Environmental
Monitoring and Assessment 185:
10191-10199. doi:10.1007/s10661-013-3323-z
Pereira, L., Fernandes, M.N. &
Martinez, C.B.R. 2013. Hematological and biochemical
alterations in the fish Prochilodus lineatus caused by the herbicides clomazone. Environmental Toxicology and Pharmacology 36: 1-8. doi:10.1016/j.etap. 2013.02.019
Piazza, Y., Pandolfi, M., Da-Cuna, R.,
Genovese, G. & Nostro, F. 2015. Endosulfan affects GnRH cells in sexually
differentiated juveniles of the perciform Cichlasoma dimerus. Ecotoxicology and Environmental
Safety 116: 150-159. doi:10.1016/j.ecoenv.2015.03.013
Reddy, S.J., Vineela, D. & Kumar, B.K.
2016. Effect of diazinon on antioxidant system of fresh water fish, Catla catla. European Journal of Biomedical and Pharmaceutical Sciences 3: 354-358.
Safari, B.R., Khalili, M., Imanpour, R.M. & Pourkazemi,
M. 2016. The effects of endosulfan on P450 1A gene expression, antioxidant
enzymes activity and histopathological alterations in liver of Persian sturgeon
(Acipenser persicus Borodin, 1987). Journal
of Applied Ichthyology 32: 636-642. doi:org/10.1111/jai.13072
Shao, B., Zhu, L., Dong, M., Wang, J.,
Wang, J., Xie, H., Zhang, Q., Du, Z. & Zhu, S. 2012. DNA damage and
oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21: 1533-1540. doi:10.1007/s10646-012-0907-2
Sharbidre, A.A., Metkari,
V. & Patode, P. 2011. Effect of methyl parathion
and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia
reticulate. Pesticide Biochemistry and Physiology 101: 132-141. doi:10.1016/j.pestbp.2011.09.002
Shukla, S., Jhamtani,
R.C., Dahiya, M.S. & Agarwal, R. 2017. Oxidative injury caused by
individual and combined exposure of neonicotinoid, organophosphate and
herbicide in zebrafish. Toxicology Reports 4: 240-244. doi:10.1016/j.toxrep.2017.05.002
Singh, N.P., McCoy, M.T., Tice, R.R. &
Schneider, E.L. 1988. A simple technique for quantization of low levels of DNA
damage in individual cells. Experimental Cell Research 175: 184-191.
Sunanda, M., Rao, J.C.S., Neelima, P., Rao,
K.G. & Simhachalam, G. 2016. Effects of
chlorpyrifos (an organophosphate pesticide) in fish. International Journal
of Pharmaceutical Sciences Review and Research 39: 299-305.
Tejada, S., Sureda, A., Roca, C., Gamundí, A. & Esteban, S. 2007. Antioxidant response
and oxidative damage in brain cortex after high dose of pilocarpine. Brain
Research Bulletin 71: 372-375.
doi:10.1016%2Fj.brainresbull.2006.10.005
Thenmozhi, C., Vignesh, V., Thirumurugan,
R. & Arun, S. 2011. Impacts of malathion on mortality and biochemical
changes of freshwater fish Labeo rohita. Iranian Journal of Environmental Health
Science & Engineering 8: 325-332.
Ullah, R., Zuberi, A., Ullah, S., Ullah, I.
& Dawar, F.U. 2014. Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. The Journal of Toxicological Sciences 39: 829-836.
Vijayakumar, A., Thirnavukkarasu,
N., Jayachandran, K. & Susiladevi, M. 2016. Attenuating properties of atropine against
the cypermethrin toxicity in the oxidative stress in the fresh
water fish Labeo rohita (Hamilton). International Journal of Modern Research and
Reviews 4: 1088-1093.
Walia, G.K., Handa, D., Kaur, H. & Kalotra, R. 2015. Ecotoxicological studies on fish, Labeo rohita exposed to tannery industry effluent by using micronucleus test. Nucleus 58: 111-116. doi:10.1007/s13237-015-0140-5
Wu, H. & Ding, S. 2016. Micronuclei and
dyskaryosis of erythrocytes and oxidative stress response with endosulfan
exposure in topmouth gudgeon Pseudorasbora parva. Ecotoxicology
and Environmental Safety 134: 179-185.
Yaseen, Ullah, A., Khan, I., Begum, M.,
Bibi, S., Umber, Namra, Khan, A., Gul, S. & Taj, R. 2024. Induced-toxicity of pesticides on edible freshwater fishes
in Pakistan: A review. Sarhad Journal of Agriculture 40(1):
195-212.
Zhang, J., Shen, H., Wang, X., Wu, J. &
Xue, Y. 2004. Effects of chronic exposure of 2,4-dichlorophenol on the
antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55: 167-174. doi:10.1016/j.chemosphere.2003.10.048
Zhang, Z.Y., Yu, X.Y., Wang,
D.L., Yan, H.J. & Liu, X.J. 2010. Acute toxicity to zebrafish of
two organophosphates and four pyrethroids and their binary mixtures. Pest
Management Sciences 66(1): 84-89. doi.org/10.1002/ps.1834
Zhao, F., Wang, B., Zhang, X., Tian, H.,
Wang, W. & Ru, S. 2015. Induction of DNA base damage and strand breaks in
peripheral erythrocytes and the underlying mechanism in goldfish (Carassius
auratus) exposed to monocrotophos. Fish
Physiology and Biochemistry 41: 613-624. doi:10.1007/s10695-015-0032-2
*Corresponding
author; email: dr.humanaz98@gmail.com